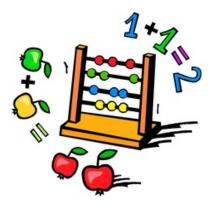
Bayesian Deep Neural Networks

Elementary mathematics

Sungjoon Choi February 9, 2018

Seoul National University

Elementary of mathematics



 $\textbf{Figure 1:} \ \, \textbf{Elementary of mathematics (copyright to wikipedia)}.$

1

Elementary of mathematics

Language is the source of misunderstandings.

(Antoine de Saint-Exupery)

Table of contents

- 1. Introduction
- 2. Set theory
- 3. Measure theory
- 4. Probability
- 5. Random variable
- 6. Random process
- 7. Functional analysis

- Whats Wrong with Probability Notation?
 - Whats Wrong?
 - 1. overloading $p(\cdot)$ for every probability function.
 - 2. using bound variables named after random variables.
 - Probability Notation is Bad

$$p(x|y) = p(y|x)p(x)/p(y)$$

• Random variables don't help.

$$P_{X|Y}(x|y) = P_{Y|X}(y|x)p_X(x)/p_Y(y)$$

Great expectations

$$\mathbb{E}[x] = \sum_{x} x p(x)$$
$$\mathbb{E}[X] = \sum_{x} x P_X(x)$$

¹https://lingpipe-blog.com/2009/10/13/whats-wrong-with-probability-notation/

- Today, I will introduce
 - 1. probability theory of Kolmogorov
 - set theory
 - measure theory.
 - 2. basic functional analysis

Caution

- Try to get familiar with the terminologies.
- Some facts could be counterintuitive.
- No proof will be provided here.

Figure 2: Andrey Kolmogorov

- Import questions to have in mind throughout this lecture:
 - 1. What is probability?
 - 2. What is a random variable?
 - 3. What is a random process?
 - 4. What is a kernel function?

Don't panic.

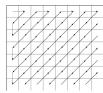
Most of the contents are from Prof. Taejeong Kim's slides.

- set, element, subset, universal set, set operations
- **disjoint** sets: $A \cap B = \emptyset$
- partition of A
 example: A = {1,2,3,4}, partition of A: {{1,2},{3},{4}}
- Cartesian product: $A \times B = \{(a, b) : a \in A, b \in B\}$
 - example: $A = \{1, 2\}, B = \{3, 4, 5\}$
 - $A \times B = \{(1,3), (1,4), (1,5), (2,3), (2,4), (2,5)\}$
- **power set** 2^A : the set of all the subsets of A.
 - example: $A = \{1, 2, 3\}$
 - $2^A = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{2,3\}, \{1,3\}, \{1,2,3\}\}$

- cardinality |A|: finite, infinite, countable, uncountable, denumerable (countably infinite)
 - $|A| = m, |B| = n \Rightarrow |A \times B| = mn$
 - $|A| = n \Rightarrow |2^A| = 2^n$
 - If there exists a one-to-one correspondence between two sets, they have the same cardinality.
 - countable: There is a one-to-one between the set and a set of natural numbers. (example: set of all integers, set of all rational numbers)

- Are the set of all integers and the set of all rational numbers countable?
- Yes. by the following mappings.

n	z	m/n	1	2	3	4	5	
1	0	1	1/1	1/2	1/3	1/4	1/5	
2	1	-1	-1/1	-1/2	-1/3	-1/4	-1/5	
3	-1	2	2/1	2/2	2/3	2/4	2/5	
4	2	-2	-2/1	-2/2	-2/3	-2/4	-2/5	
5	-2	3	3/1	3/2	3/3	3/4	3/5	
6	3	-3	-3/1	-3/2	-3/3	-3/4	-3/5	
7	-3	:	1 :					
			1					



• In fact, they are the same.

• denumerable: countably infinite

All denumerable sets are of the **same** cardinality, which is denoted by \aleph_0 , aleph null or aleph naught.

• uncountable: not countable²

The smallest known uncountable set is (0,1) or \mathbb{R} , the set of all real numbers, whose cardinality is denoted by \mathbf{c} , continuum.

$$\mathbf{c} = 2^{\aleph_0}$$

 $^{^2\}mathsf{Found}$ by Georg Cantor in 1874.

• Show that the cardinality of C = [0, 1] is uncountable (Cantor's diagonal argument).

Proof sketch)

- 1. Suppose that C is countable.
- 2. Then, there exists a sequence $S = \{x_1, x_2, \ldots\}$ such that all elements in C are covered.
- 3. We can represent each x_i using a binary system.

$$x_1 = 0.d_{11}d_{12}d_{13}...$$

 $x_2 = 0.d_{21}d_{22}d_{23}...$
 $x_3 = 0.d_{31}d_{32}d_{33}...$

where $d_{ij} \in \{0, 1\}$.

- 4. Define $x_{new}=0.\bar{d}_1\bar{d}_2\bar{d}_3\dots$ such that $\bar{d}_i=1-d_{ii}$.
- Clearly, x_{new} does not appear in S, which is a contraction. So C must be uncountable.

- Then what is the number of real numbers between 0 and 1?
- Proof sketch)
 - 1. We can represent a real number between 0 and 1 using a binary system.

$$r_1 = 0.d_{11}d_{12}d_{13}...$$

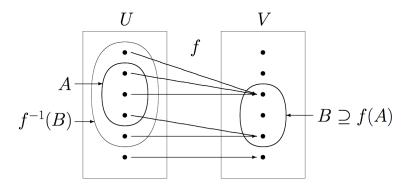
 $r_2 = 0.d_{21}d_{22}d_{23}...$
 $r_3 = 0.d_{31}d_{32}d_{33}...$

where $d_{ij} \in \{0,1\}$.

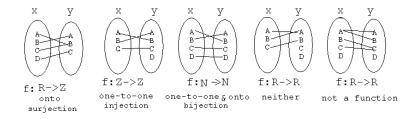
- 2. To fully distinguish a real number r_i , we need \aleph_0 bits where \aleph_0 is the number of all integers.
- 3. Consequently, $\mathbf{c} = 2^{\aleph_0}$ (uncountable).

- function or mapping $f: U \rightarrow V$
- domain U, codomain V
- image $f(A) = \{f(x) \in V : x \in A\}, A \subseteq U$
- range *f*(*U*)
- inverse image or preimage

$$f^{-1}(B) = \{x \in U : f(x) \in B\}, B \subseteq V$$



- one-to-one or injective: $f(a) = f(b) \Rightarrow a = b$
- onto or surjective: f(U) = V
- invertible: one-to-one and onto



Given a universal set U, a measure assigns a nonnegative real number to each subset of U.

- **set function**: a function assigning a number of a set (example: cardinality, length, area).
- σ -field \mathcal{B} : a collection of subsets of U such that (axioms)
 - 1. $\emptyset \in \mathcal{B}$ (empty set is included.)
 - 2. $B \in \mathcal{B} \Rightarrow B^c \in \mathcal{B}$ (closed under set complement.)
 - 3. $B_i \in \mathcal{B} \Rightarrow \cup_{i=1}^\infty B_i \in \mathcal{B}$ (closed under countable union.)

- properties of σ -field $\mathcal B$
 - 1. $U \in \mathcal{B}$ (entire set is included.)
 - 2. $B_i \in \mathcal{B} \Rightarrow \bigcap_{i=1}^{\infty} B_i \in \mathcal{B}$ (closed under countable intersection)
 - 3. 2^U is a σ -field.
 - 4. \mathcal{B} is either finite or uncountable, never denumerable.
 - 5. \mathcal{B} and \mathcal{C} are σ -fields $\Rightarrow \mathcal{B} \cap \mathcal{C}$ is a σ -field but $\mathcal{B} \cup \mathcal{C}$ is not.
 - $\mathcal{B} = \{\emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$
 - $C = \{\emptyset, \{a, b\}, \{c\}, \{a, b, c\}\}$
 - $\mathcal{B} \cap \mathcal{C} = \{\emptyset, \{a, b, c\}\}\$ (this is a σ -field)
 - $\mathcal{B} \cup \mathcal{C} = \{\emptyset, \{a\}, \{c\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$ (this is not a σ -field as $\{a, c\} = \{a\} \cap \{c\}$ is not included.)
- $\sigma(\mathcal{C})$ is called the σ -field **generated** by \mathcal{C} .

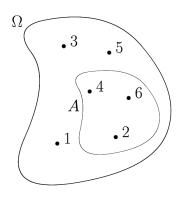
A σ -field is designed to define a measure.

If the element is not inside a σ -field, it cannot be measured.

- A set U and a σ -field of subsets of U form a **measurable space** (U, \mathcal{B}) .
- A measure μ defined on a measurable space (U,\mathcal{B}) is a set function $\mu:\mathcal{B}\to [0,\infty]$ such that
 - 1. $\mu(\emptyset) = 0$
 - 2. For disjoint B_i and $B_j \Rightarrow \mu(\cup_{i=1}^{\infty} B_i) = \sum_{i=1}^{\infty} \mu(B_i)$ (countable additivity)
- Probability is a measure such that $\mu(U)=1$, i.e., normalized measure.
- A measurable space (U, \mathcal{B}) and a measure μ defined on it together form a measure space (U, \mathcal{B}, μ) .

What is probability?

• Toss a fair dice and observe the outcomes.



- $P({1}) = P({2}) = P({3}) = P({4}) = P({5}) = P({6}) = 1/6$
- $P(A) = P(2,4,6) = P(\{2\}) + P(\{4\}) + P(\{6\}) = 1/2$

- The random experiment should be well defined.
- The outcomes are all the possible results of the random experiment each of which canot be further divided.
- The **sample point** w: a point representing an outcome.
- The **sample space** Ω : the set of all the sample points.

- Definition (probability)
 - P defined on a measurable space (Ω, A) is a set function $P: A \to [0, 1]$ such that (probability axioms).
 - 1. $P(\emptyset) = 0$
 - 2. $P(A) \ge 0 \ \forall A \subseteq \Omega$
 - 3. For disjoint sets A_i and $A_j \Rightarrow P(\bigcup_{i=1}^k A_i) = \sum_{i=1}^k P(A_i)$ (countable additivity)
 - 4. $P(\Omega) = 1$

How do we assign **probability** to each event in A in such a way as to satisfy the axioms?

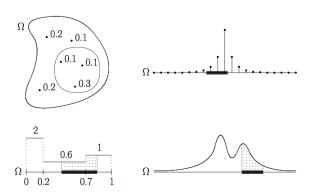
Probability

• probability allocation function

- For discrete Ω : $p:\Omega \to [0,1]$ such that $\sum_{w\in\Omega} p(w) = 1$ and $P(A) = \sum_{w\in A} p(w)$.
- For continuous Ω : $f: \Omega \to [0, \infty)$ such that $\int_{w \in \Omega} f(w) dw = 1$ and $P(A) = \int_{w \in A} f(w) dw$.
- Recall that probability P is a set function $P: \mathcal{A} \to [0,1]$ where \mathcal{A} is a σ -field.

Probability

Examples of probability allocation functions:

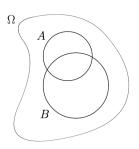


Conditional probability

• **conditional probability** of *A* given *B*:

$$P(A|B) \triangleq \frac{P(A \cap B)}{P(B)}.$$

• Again, recall that **probability** P is a set function, i.e., $P: \mathcal{A} \to [0,1]$.



Conditional probability

• From the definition of conditional probability, we can derive:

$$P(A|B) \triangleq \frac{P(A \cap B)}{P(B)}.$$

- chain rule:
 - $P(A \cap B) = P(A|B)P(B)$
 - $P(A \cap B \cap C) = P(A|B \cap C)P(B \cap C) = P(A|B \cap C)P(B|C)P(C)$
- total probability law:

$$P(A) = P(A \cap B) + P(A \cap B^{C})$$

= $P(A|B)P(B) + P(A|B^{C})P(B^{C})$

Bayes' rule

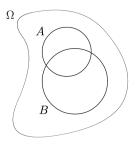
• Bayes' rule

$$P(B|A) = \frac{P(B \cap A)}{P(A)} = \frac{P(A \cap B)}{P(A)} = \frac{P(A|B)P(B)}{P(A)}$$

- When B is the event that is considered and A is an observation,
 - P(B|A) is called **posterior probability**.
 - *P*(*B*) is called **prior probability**.

Independence

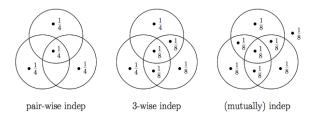
• independent events A and B: $P(A \cap B) = P(A)P(B)$



ullet independent eq disjoint, mutually exclusive

Independence

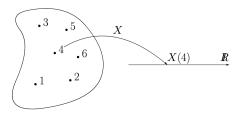
Example:



random variable:

A random variable is a real-valued function defined on Ω that is measurable w.r.t. the probability space (Ω, \mathcal{A}, P) and the Borel measurable space $(\mathbb{R}, \mathcal{B})$, i.e.,

$$X: \Omega \to \mathbb{R}$$
 such that $\forall B \in \mathcal{B}, X^{-1}(B) \in \mathcal{A}$.



- What is random here?
- What is the result of carrying out the random experiment?

- Random variables are real numbers of our interest that are associated with the outcomes of a random experiment.
- X(w) for a specific $w \in \Omega$ is called a **realization**.
- The set of all realizations of X is called the **alphabet** of X.
- We are interested in $P(X \in B)$ for $B \in \mathcal{B}$:

$$P(X \in B) \triangleq P(X^{-1}(B)) = P(\lbrace w : X(w) \in B \rbrace)$$

• discrete random variable: There is a discrete set

$$\{x_i : i = 1, 2, \dots\}$$
 such that $\sum P(X = x_i) = 1$.

- probability mass function: $p_X(x) \triangleq P(X = x)$ that satisfies
 - 1. $0 \le p_X(x) \le 1$
 - 2. $\sum_{x} p_X(x) = 1$
 - 3. $P(X \in B) = \sum_{x \in B} p_X(x)$

- example: three fair-coin tosses
 - X = number of heads
 - probability mass function (pmf)

$$px(x) = \begin{cases} 1/8, & x = 0 \\ 3/8, & x = 1 \\ 3/8, & x = 2 \\ 1/8, & x = 3 \\ 0, & \text{else} \end{cases}$$

•
$$P(X \ge 1) = \frac{3}{8} + \frac{3}{8} + \frac{1}{8} = \frac{7}{8}$$

• Bernoulli
$$p_X(k) = \begin{cases} 1-p, & k=0 \\ p, & k=1 \\ 0, & \text{else} \end{cases}$$
• uniform $p_X(k) = \begin{cases} 1/(m-l+1), & k=l,l+1,l+2,\cdots,m \\ 0, & \text{else} \end{cases}$
• geometric $p_X(k) = \begin{cases} (1-p)p^k, & k=0,1,2,\cdots \\ 0, & \text{else} \end{cases}$

continuous random variable

There is an integrable function $f_X(x)$ such that $P(X \in B) = \int_B f_X(x) dx$.

· probability density function

$$f_X(x) \triangleq \lim_{\Delta x \to 0} \frac{P(x < X \le x + \Delta x)}{\Delta x}$$
 that satisfies

- 1. $f_X(x) > 1$ is possible.
- $2. \int_{-\infty}^{\infty} f_X(x) dx = 1$
- 3. $P(X \in B) = \int_{x \in B} f_X(x) dx$

• uniform
$$f_X(k) = \begin{cases} 1/(b-a), & a \le x \le b \\ 0, & \text{else} \end{cases}$$

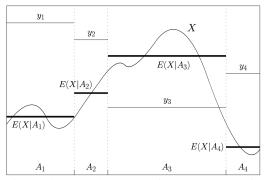
- exponential $f_X(k) = \begin{cases} \lambda e^{\lambda x}, & x \ge 0 \\ 0, & \text{else} \end{cases}$
- Laplace $f_X(k) = \frac{\lambda}{2} e^{\lambda |x|}$
- Gaussian $f_X(k) = \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{1}{2}(\frac{x-\mu}{\sigma})^2)$
- Cauchy $f_X(k) = \frac{\lambda}{\pi(\lambda^2 + x^2)}$

Expectation

$$EX \triangleq \begin{cases} \sum_{x} x p_{X}(x), & \text{discrete} X \\ \int_{\infty}^{\infty} x f_{X}(x) dx, & \text{continuous} X \end{cases}$$

- Conditional expectation E(X|Y)
 - Expectation E(X) of random variable X is $EX = \int x f_X(x) dx$ and is a deterministic variable.
 - E(X|Y) is a function of Y and hence a random variable.
 - For each y, E(X|Y) is X average over the event where Y=y.

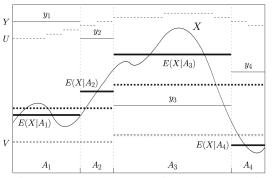
• Conditional expectation E(X|Y)



Assume that the probability is uniformly allocated over Ω .

- Definition (conditional expectation)
 - Given a random variable Y with $\mathbb{E}|Y| < \infty$ defined on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$ and some sub- σ -field $\mathcal{G} \subset \mathcal{A}$ we will define the **conditional expectation** as the almost surely unique random variable $\mathbb{E}(Y|\mathcal{G})$ which satisfies the following two conditions
 - 1. $(Y|\mathcal{G})$ is \mathcal{G} -measurable.
 - 2. $\mathbb{E}(YZ) = \mathbb{E}(\mathbb{E}(Y|\mathcal{G}Z) \text{ for all } Z \text{ which are bounded and } \mathcal{G}\text{-measurable.}$

• Conditional expectation E(X|Y) with different σ -fields.



Assume that the probability is uniformly allocated over Ω .

Moment

- n-th moment EXⁿ
- mean $m_X = EX$
- variance $\sigma_X^2 = var(X) = E(X m_X)^2$
- skewness $\frac{E(X-m_X)^3}{\sigma_X^3}$
- kurtosis $\frac{E(X-m_X)^4}{\sigma_X^4}$

Joint moment

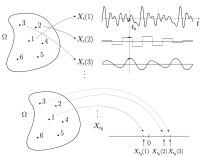
- correlation EXY
- covariance $cov(X, Y) = E(X m_X)(Y m_Y)$
- correlation coefficient $\rho_{XY} = \frac{\text{cov}(X,Y)}{\sigma_X \sigma_Y}$
- uncorrelated EXY = EXEY
 - independent ⇒ uncorrelated
- orthogonal EXY = 0

We would like to extend random vectors to infinite dimensions. That
is, we would like to mathematically describe an infinite number of
random variables simultaneously, e.g., infinite trials of tossing a die.

- random process $X_t(w)$, $t \in I$:
 - 1. random sequence, random function, or random signal: $X_t: \Omega \to \text{the set of all sequences or functions}$
 - $2. \ \ indexed \ family \ of \ infinite \ number \ of \ random \ variables:$

 $X_t: I \to \mathsf{set}$ of all random variables defined on Ω

- 3. $X_t: \Omega \times I \to \mathbb{R}$
- 4. If t is fixed, then a random process becomes a random variable.



- A random process X_t is completely characterized if the following is known.
 - $P((X_{t_1}, \dots, X_{t_k}) \in B)$ for any B, k, and t_1, \dots, t_k
- Note that given a random process, only 'finite-dimensional' probabilities or probability functions can be specified.

- For a fixed $t \in \mathcal{T}$, $X_t(w)$ is a random variable.
- For a fixed w ∈ Ω, X_t(w) is a deterministic function of t, which is called a sample path.
- types of random processes
 - 1. discrete-time
 - 2. continuous-time
 - 3. discrete-valued
 - 4. continuous-valued
- Example: Brownian motion

- Moment
 - mean function

$$m_X(t) \triangleq EX_t = \begin{cases} \sum_x x p_{X_t}(x), & \text{discrete-valued} \\ \int x f_{X_t}(x) dx, & \text{continuous-valued} \end{cases}$$

• auto-correlation function, acf

$$R_X(t,s) \triangleq EX_tX_s$$

• auto-covariance function, acvf

$$C_X(t,s) \triangleq E(X_t - m_X(t))(X_s - m_X(s))$$

• cross-covariance function, acvf

$$R_{XY}(t,s) \triangleq E(X_t - m_X(t))(Y_s - m_Y(s))$$

- Stationarity
 - (strict-sense) stationary, sss

$$P((X_{t_1+\tau},\cdots,X_{t_k+\tau})\in B)=P((X_{t_1},\cdots,X_{t_k})\in B)$$

- If X_t is strict-sense stationary,
 - $m_X(t+\tau)=m_X(t)$
 - $R_X(t+\tau,s+\tau)=R_X(t,s)$
 - $C_X(t+\tau,s+\tau)=C_X(t,s)$
- If X_t is wide-sense stationary,
 - $m_X(t+\tau) = m_X(t)$
 - $R_X(t+\tau,s+\tau)=R_X(t,s)$

- If X_t is wide-sense stationary,
 - $m_X(t) = m_X$
 - $R_X(t,s) = R_X(t-s) = R_X(\tau)$
 - $C_X(t,s) = C_X(t-s) = C_X(\tau)$
- In (general) Gaussian processes, wss is assumed.
- $R_X(t,s)$ corresponds to a kernel function, i.e., k(t,s).

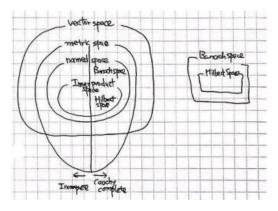


Figure 3: Mathematical spaces (copyright to Kyungmin Noh).

- Vector space: space with algebraic structures (addition, scalar multiplication, ...)
- Metric space: space with a metric (distance)
- Normed space: space with a norm (size)
- Inner-product space: space with an inner-product (similarity)
- Hilbert space: complete space

- We will show a bunch to terminologies and theorems.
 - 1. Inner product
 - 2. Hilbert space
 - 3. Kernel
 - 4. Positive definite
 - 5. Eigenfunction and eigenvalue
 - 6. Mercer's theorem
 - 7. Bochner's theorem
 - 8. Reproducing kernel Hilbert space (RKHS)
 - 9. Moore-Aronszajn theorem
 - 10. Representer theorem

- Definition (inner product)
 - Let $\mathcal H$ be a vector space over $\mathbb R$. A function $\langle \cdot, \cdot \rangle_{\mathcal H}: \mathcal H \times \mathcal H \to \mathbb R$ is an inner product on $\mathcal H$ if
 - 1. Linear: $\langle \alpha_1 f_1 + \alpha_2 f_2, g \rangle_{\mathcal{H}}$
 - 2. Symmetric $\langle f, g \rangle_{\mathcal{H}} = \langle g, h \rangle_{\mathcal{H}}$
 - 3. $\langle f, f \rangle_{\mathcal{H}} \geq 0$ and $\langle f, f \rangle_{\mathcal{H}} = 0$ if and only if f = 0.
 - Note that norm can be naturally defined from the inner product:

$$||f||_{\mathcal{H}} \triangleq \sqrt{\langle f, f \rangle_{\mathcal{H}}}$$

Don't panic.

- Definition (Hilbert space)
 - Inner product space containing Cauchy sequence limits.
 - \Rightarrow Complete space
 - \Rightarrow Always possible to *fill all the holes*.
 - $\Rightarrow \mathbb{R}$ is complete, \mathbb{Q} is not complete.

- Definition (Kernel)
 - Let $\mathcal X$ be a non-empty set. A function $k:\mathcal X\times\mathcal X\to\mathbb R$ is a kernel if there exists a Hilbert space $\mathcal H$ and a map $\phi:\mathcal X\to\mathcal H$ such that $\forall x,x'\in\mathcal X$,

$$k(x, x') \triangleq \langle \phi(x), \phi(x') \rangle_{\mathcal{H}}.$$

• Note that there is almost no condition on \mathcal{X} .

- Sum of kernels or product of kernels are also a kernel.
- Kernels can be defined in terms of sequences in $\phi \in I_2$, i.e., $\sum_{i=1}^{\infty} \phi_i^2(x) \leq \infty$.
- Theorem
 - Given a sequence of functions $\{\phi_i(x)\}_{i\geq 1}$ in I_2 , where $\phi_i: \mathcal{X} \to \mathbb{R}$ is the i-th coordinate of $\phi(x)$. Then

$$k(x,x') \triangleq \sum_{i=1}^{\infty} \phi_i(x)\phi_i(x').$$

This is often used as an intuitive interpretation of a kernel function.

• Let T_k be an operator defined as

$$(T_k f)(x) = \int_{\mathcal{X}} k(x, x') f(x') d\mu(x')$$

where $\mu(\cdot)$ denotes a measure $(d\mu(x') \to dx')$.

• T_k can be viewed as a mapping between spaces of functions:

$$T_k: L_2(\mathcal{X}, \mu) \to L_2(\mathcal{X}, \mu).$$

• Once a kernel $k(\cdot, \cdot)$ is defined, the mapping T_k is defined accordingly.

- Definition (positive definite)
 - A kernel is said to be positive definite if

$$\int k(x,x')f(x)f(x')d\mu(x)d\mu(x')\geq 0$$
 for all $f\in L_2(x,\mu)$.

- Definition (Eigenfunction and eigenvalue)
 - Given a kernel function $k(\cdot, \cdot)$ and

$$\int k(x,x')\phi(x)d\mu(x) = \lambda\phi(x').$$

Then, $\phi(x)$ and λ are eigenfunction and eigenvalue of a kernel $k(\cdot, \cdot)$.

- Theorem (Mercer)
 - Let (\mathcal{X}, μ) be a finite measurable space and $k \in L_{\infty}(\mathcal{X}^2, \mu^2)$ be a kernel such that $T_k : L_2(\mathcal{X}, \mu) \to L_2(\mathcal{X}, \mu)$ is positive definite.
 - Let $\phi_i \in L_2(\mathcal{X}, \mu)$ be the normalized eigenfunctions of \mathcal{T}_k associated with the eigenvalues $\lambda_i > 0$. Then:
 - 1. The eigenvalues $\{\lambda_i\}_{i=1}^{\infty}|$ are absolutely summable.

2.

$$k(x, x') = \sum_{i=1}^{\infty} \lambda_i \phi_i(x) \phi_i(x')$$

holds μ^2 almost everywhere, where the series converges absolutely and uniformly μ^2 almost everywhere.

- Absolutely summable is more important than it seems.
- SB: Mercer's theorem can be interpreted as an infinite dimensional SVD.

- Theorem (Kernels are positive definite)
 - Let $\mathcal H$ be a Hilbert space, $\mathcal X$ be a non-empty set, and $\phi: \mathcal X \to \mathcal H$. Then $\langle \phi(x), \phi(x') \rangle_{\mathcal H}$ is positive definite.
- Reverse also holds: Positive definite k(x,x') is an inner-product in $\mathcal H$ between $\phi(x)$ and $\phi(x')$.

- Theorem (Bochner)
 - Let f be a bounded continuous function on \mathbb{R}^d . Then f is positive semidefinite iff. it is the (inverse) Fourier transform of a nonnegative and finite Borel measure mu, i.e.,

$$f(x) = \int_{\mathbb{R}^d} e^{iw^T x} \mu(dw).$$

• What does this mean?

- Corollary (Bochner)
 - If we have an isotropic kernel function function, i.e.,

$$k(x, x') = k_I(t = |x - x'|),$$

showing the non-negativeness of a Fourier series of $k_l(t)$ is equivalent to showing the positive definiteness of k(x, x').

• Example:

$$k(x,x') = \cos\left(\frac{\pi}{2}|x-x'|\right).$$

- Definition (reproducing kernel Hilbert space)
 - Let \mathcal{H} be a Hilbert space of \mathbb{R} -valued functions on \mathcal{X} . A function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a reproducing kernel on \mathcal{H} , and \mathcal{H} is a reproducing kernel Hilbert space if

```
1. \forall x \in \mathcal{X}
k(\cdot, x) \in \mathcal{H}
2. \forall x \in \mathcal{X}, \forall f \in \mathcal{H}
\langle f(\cdot), k(\cdot, x) \rangle_{\mathcal{H}} = f(x) (reproducing property)
3. \forall x, x' \in \mathcal{X}
k(x, x') = \langle k(\cdot, x), k(\cdot, x') \rangle_{\mathcal{H}}
```

What does this indicates?

- Suppose we have a RKHS \mathcal{H} , $f(\cdot) \in \mathcal{H}$, and $k(\cdot, x) \in \mathcal{H}$.
- Then the reproducing property indicates that evaluation of $f(\cdot)$ at x, i.e., f(x) is the inner-product of $k(\cdot, x)$ and $f(\cdot)$ itself, i.e.,

$$f(x) = \langle f, k(\cdot, x) \rangle_{\mathcal{H}}.$$

• Recall Mercer's theorem $k(x, x') = \sum_{i=1}^{\infty} \lambda_i \phi_i(x) \phi_i(x')$. Then,

$$f(x) = \left\langle f, \sum_{i=1}^{\infty} \lambda_i \phi_i(\cdot) \phi_i(x) \right\rangle_{\mathcal{H}}$$
$$= \sum_{i=1}^{\infty} \lambda_i \left\langle f, \phi_i(\cdot) \right\rangle_{\mathcal{H}} \phi_i(x)$$
$$= \sum_{i=1}^{\infty} \bar{\lambda}_i \phi_i(x)$$

where $\bar{\lambda}_i = \lambda_i \langle f, \phi_i(\cdot) \rangle_{\mathcal{H}}$.

- Theorem (Moore-Aronszajn)
 - Let $\mathcal X$ be a non-empty set. Then, for every positive-definite function $k(\cdot,\cdot)$ on $\mathcal X \times \mathcal X$, there exists a unique RKHS and vice versa.
- This indicates:

reproducing kernels \Leftrightarrow positive definite function \Leftrightarrow RKHS

- Definition (another view of RKHS)
 - ullet Consider the space of function ${\cal H}$ defined as

$$\mathcal{H} = \{ f(x) = \sum_{i=1}^{n} \alpha_i k(x, x_i) : n \in \mathbb{N}, x_i \in \mathcal{X}, \alpha_i \in \mathbb{R} \}.$$

• Let $g(x) = \sum_{j=1}^{n'} \alpha'_j k(x, x'_j)$, then we define the inner-product

$$\langle f, h \rangle_{\mathcal{H}} = \sum_{i=1}^{n} \sum_{j=1}^{n'} \alpha_i \alpha'_j k(x_i, x'_j)$$

We can easily demonstrate the reproducing property:

$$\langle k(\cdot, x), f(\cdot) \rangle_{\mathcal{H}} = \langle k(\cdot, x), \sum_{i=1}^{n} \alpha_{i} k(\cdot, x_{i}) \rangle_{\mathcal{H}}$$
$$= \sum_{i=1}^{n} \alpha_{i} k(x, x_{i})$$
$$= f(x).$$

- Theorem (Representer)
 - Let \mathcal{X} be a nonempty set and $k(\cdot,\cdot)$ be a positive definite kernel with corresponding RKHS \mathcal{H}_k . Given training samples $\mathcal{D}=(x_1,y_1),\ldots,(x_n,y_n)\in\mathcal{X}\times\mathbb{R}$, a strictly monotonically increasing real-valued function $g:[0,\infty)\to\mathbb{R}$, and an arbitrary empirical risk function $E:(\mathcal{X}\times\mathbb{R}^2)^n\to\mathbb{R}\cup\{\infty\}$, then for any $f^*\in\mathcal{H}_k$ satisfying

$$f^* = \arg\min_{f \in \mathcal{H}_k} \{ E(\mathcal{D}) + g(\|f\|) \}$$

 f^* admits a representation of the form:

$$f^*(\cdot) = \sum_{i=1}^n \alpha_i k(\cdot, x_i)$$

where $\alpha_i \in \mathbb{R}$.

- Example
 - 1. Given $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$, solve

$$\min_{f \in \mathcal{H}_k} \frac{1}{2} \sum_{i=1}^n (f(x_i) - y_i)^2 + \gamma \|f\|_{\mathcal{H}}^2.$$
 (1)

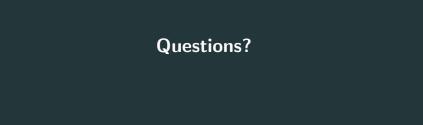
2. From the representer theorem, solving (1) becomes:

$$\min_{\alpha \in \mathbb{R}^n} \frac{1}{2} \sum_{i=1}^n \left(\sum_{j=1}^n \alpha_j k(x_i, x_j) - y_i \right)^2 + \gamma \|f\|_{\mathcal{H}}^2.$$
 (2)

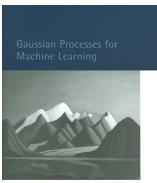
3. Represent (2) with a matrix form:

$$\min_{\alpha \in \mathbb{R}^n} \frac{1}{2} \| K_{XX} \alpha - Y \|_2^2 + \gamma \alpha^T K_{XX} \alpha. \tag{3}$$

- 4. $\nabla_{\alpha}(3) = K_{XX}(K_{XX}\alpha Y) + \gamma K_{XX}\alpha = 0$
- 5. Finally, $\alpha = (K_{XX} + \gamma I)^{-1} Y$ where $f(x) = \sum_{i=1}^{n} \alpha_i(x, x_i)$.
- Note that the form of this solution is identical to the mean function of Gaussian process regression.



Text book



Carl Edward Rasmussen and Christopher K. I. Williams

References i