Pytorch Quantization 정리
2020, May 10
- 참조 : https://pytorch.org/docs/stable/quantization.html#torch.nn.intrinsic.ConvBnReLU2d
- 참조 : https://pytorch.org/blog/introduction-to-quantization-on-pytorch/
- 참조 : https://pytorch.org/docs/stable/quantization.html
- 참조 : https://youtu.be/c3MT2qV5f9w
- 참조 : https://leimao.github.io/blog/PyTorch-Static-Quantization/
- 참조 : https://leimao.github.io/blog/PyTorch-Quantization-Aware-Training/
- 이번 글에서는 Pytorch를 이용한 Quantization 방법들에 대하여 정리해 보도록 하겠습니다.
Pytorch Quantization Aware Training 예시
- TensorFlow는 2~16 bit의 quantization을 지원하는 반면에 Pytorch (1.7.0 기준)에서는 int8 quantization을 지원하고 있습니다.
- QAT를 적용하는 전체 workflow는 간단합니다. 단순히 QAT wrapper를 모델에 적용하면 되기 때문입니다. 하지만 추가적으로 고려해야할 점이 있습니다. 바로
layer fusion
입니다. 경우에 따라서layer fusion
을 하지 않으면 QAT를 하더라도 좋은 성능이 나오지 않는 경우가 발생하곤 합니다. - 이번 예제에서는 TorchVision 모델 중
ResNet18
을 이용할 예정이며layer fusion
과skip connections replacement
또한 적용할 예정입니다.
- QAT의 전체적인 Flow는 다음과 같습니다.
- ① floating point 타입으로 모델을 학습하거나 pre-trained 모델을 불러옵니다.
- ② 모델을
CPU
상태로 두고 학습 모드로 변환합니다. (model.train()
) - ③
layer fusion
을 적용합니다. - ④ 모델을 평가 모드로 변환 후 (
model.eval()
) layer fusion이 잘 적용되었는 지 확인합니다. 확인 후에는 다시 학습 모드로 변경해 줍니다. - ⑤
input
에는torch.quantization.QuantStub()
를 적용시키고output
에는torch.quantization.DeQuantStub()
을 적용시킵니다. - ⑥ quantization configuration을 지정합니다. (ex. symmetric quantization, asymmetric quantization)
- ⑦ QAT를 하기 위하여 quantization 모델을 준비합니다.
- ⑧ 모델을 다시
CUDA
가 상태로 적용하고 CUDA를 이용하여 QAT를 모델 학습을 진행합니다. - ⑨ 모델을 다시
CPU
상태로 두고 QAT가 적용된 floating point 모델을 quantized integer model로 변환합니다. - ⑩ quantized integer model의 정확도 및 성능을 확인합니다.
- ⑪ quantized integer model을 저장합니다.
# cifar.py
import os
import random
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
from torchvision import datasets, transforms
import time
import copy
import numpy as np
from resnet import resnet18
def set_random_seeds(random_seed=0):
torch.manual_seed(random_seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(random_seed)
random.seed(random_seed)
def prepare_dataloader(num_workers=8, train_batch_size=128, eval_batch_size=256):
train_transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
# transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))
])
test_transform = transforms.Compose([
transforms.ToTensor(),
# transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))
])
train_set = torchvision.datasets.CIFAR10(root="data", train=True, download=True, transform=train_transform)
# We will use test set for validation and test in this project.
# Do not use test set for validation in practice!
test_set = torchvision.datasets.CIFAR10(root="data", train=False, download=True, transform=test_transform)
train_sampler = torch.utils.data.RandomSampler(train_set)
test_sampler = torch.utils.data.SequentialSampler(test_set)
train_loader = torch.utils.data.DataLoader(
dataset=train_set, batch_size=train_batch_size,
sampler=train_sampler, num_workers=num_workers)
test_loader = torch.utils.data.DataLoader(
dataset=test_set, batch_size=eval_batch_size,
sampler=test_sampler, num_workers=num_workers)
return train_loader, test_loader
def evaluate_model(model, test_loader, device, criterion=None):
model.eval()
model.to(device)
running_loss = 0
running_corrects = 0
for inputs, labels in test_loader:
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
if criterion is not None:
loss = criterion(outputs, labels).item()
else:
loss = 0
# statistics
running_loss += loss * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
eval_loss = running_loss / len(test_loader.dataset)
eval_accuracy = running_corrects / len(test_loader.dataset)
return eval_loss, eval_accuracy
def train_model(model, train_loader, test_loader, device, learning_rate=1e-1, num_epochs=200):
# The training configurations were not carefully selected.
criterion = nn.CrossEntropyLoss()
model.to(device)
# It seems that SGD optimizer is better than Adam optimizer for ResNet18 training on CIFAR10.
optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9, weight_decay=1e-4)
# scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=500)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[100, 150], gamma=0.1, last_epoch=-1)
# optimizer = optim.Adam(model.parameters(), lr=learning_rate, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=False)
# Evaluation
model.eval()
eval_loss, eval_accuracy = evaluate_model(model=model, test_loader=test_loader, device=device, criterion=criterion)
print("Epoch: {:02d} Eval Loss: {:.3f} Eval Acc: {:.3f}".format(-1, eval_loss, eval_accuracy))
for epoch in range(num_epochs):
# Training
model.train()
running_loss = 0
running_corrects = 0
for inputs, labels in train_loader:
inputs = inputs.to(device)
labels = labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
train_loss = running_loss / len(train_loader.dataset)
train_accuracy = running_corrects / len(train_loader.dataset)
# Evaluation
model.eval()
eval_loss, eval_accuracy = evaluate_model(model=model, test_loader=test_loader, device=device, criterion=criterion)
# Set learning rate scheduler
scheduler.step()
print("Epoch: {:03d} Train Loss: {:.3f} Train Acc: {:.3f} Eval Loss: {:.3f} Eval Acc: {:.3f}".format(epoch, train_loss, train_accuracy, eval_loss, eval_accuracy))
return model
def calibrate_model(model, loader, device=torch.device("cpu:0")):
model.to(device)
model.eval()
for inputs, labels in loader:
inputs = inputs.to(device)
labels = labels.to(device)
_ = model(inputs)
def measure_inference_latency(model,
device,
input_size=(1, 3, 32, 32),
num_samples=100,
num_warmups=10):
model.to(device)
model.eval()
x = torch.rand(size=input_size).to(device)
with torch.no_grad():
for _ in range(num_warmups):
_ = model(x)
torch.cuda.synchronize()
with torch.no_grad():
start_time = time.time()
for _ in range(num_samples):
_ = model(x)
torch.cuda.synchronize()
end_time = time.time()
elapsed_time = end_time - start_time
elapsed_time_ave = elapsed_time / num_samples
return elapsed_time_ave
def save_model(model, model_dir, model_filename):
if not os.path.exists(model_dir):
os.makedirs(model_dir)
model_filepath = os.path.join(model_dir, model_filename)
torch.save(model.state_dict(), model_filepath)
def load_model(model, model_filepath, device):
model.load_state_dict(torch.load(model_filepath, map_location=device))
return model
def save_torchscript_model(model, model_dir, model_filename):
if not os.path.exists(model_dir):
os.makedirs(model_dir)
model_filepath = os.path.join(model_dir, model_filename)
torch.jit.save(torch.jit.script(model), model_filepath)
def load_torchscript_model(model_filepath, device):
model = torch.jit.load(model_filepath, map_location=device)
return model
def create_model(num_classes=10):
# The number of channels in ResNet18 is divisible by 8.
# This is required for fast GEMM integer matrix multiplication.
# model = torchvision.models.resnet18(pretrained=False)
model = resnet18(num_classes=num_classes, pretrained=False)
# We would use the pretrained ResNet18 as a feature extractor.
# for param in model.parameters():
# param.requires_grad = False
# Modify the last FC layer
# num_features = model.fc.in_features
# model.fc = nn.Linear(num_features, 10)
return model
class QuantizedResNet18(nn.Module):
def __init__(self, model_fp32):
super(QuantizedResNet18, self).__init__()
# QuantStub converts tensors from floating point to quantized.
# This will only be used for inputs.
self.quant = torch.quantization.QuantStub()
# DeQuantStub converts tensors from quantized to floating point.
# This will only be used for outputs.
self.dequant = torch.quantization.DeQuantStub()
# FP32 model
self.model_fp32 = model_fp32
def forward(self, x):
# manually specify where tensors will be converted from floating
# point to quantized in the quantized model
x = self.quant(x)
x = self.model_fp32(x)
# manually specify where tensors will be converted from quantized
# to floating point in the quantized model
x = self.dequant(x)
return x
def model_equivalence(model_1, model_2, device, rtol=1e-05, atol=1e-08, num_tests=100, input_size=(1,3,32,32)):
model_1.to(device)
model_2.to(device)
for _ in range(num_tests):
x = torch.rand(size=input_size).to(device)
y1 = model_1(x).detach().cpu().numpy()
y2 = model_2(x).detach().cpu().numpy()
if np.allclose(a=y1, b=y2, rtol=rtol, atol=atol, equal_nan=False) == False:
print("Model equivalence test sample failed: ")
print(y1)
print(y2)
return False
return True
def main():
random_seed = 0
num_classes = 10
cuda_device = torch.device("cuda:0")
cpu_device = torch.device("cpu:0")
model_dir = "saved_models"
model_filename = "resnet18_cifar10.pt"
quantized_model_filename = "resnet18_quantized_cifar10.pt"
model_filepath = os.path.join(model_dir, model_filename)
quantized_model_filepath = os.path.join(model_dir, quantized_model_filename)
set_random_seeds(random_seed=random_seed)
# Create an untrained model.
model = create_model(num_classes=num_classes)
train_loader, test_loader = prepare_dataloader(num_workers=8, train_batch_size=128, eval_batch_size=256)
# Train model.
print("Training Model...")
model = train_model(model=model, train_loader=train_loader, test_loader=test_loader, device=cuda_device, learning_rate=1e-1, num_epochs=200)
# Save model.
save_model(model=model, model_dir=model_dir, model_filename=model_filename)
# ① floating point 타입으로 모델을 학습하거나 pre-trained 모델을 불러옵니다.
# Load a pretrained model.
model = load_model(model=model, model_filepath=model_filepath, device=cuda_device)
# Move the model to CPU since static quantization does not support CUDA currently.
# ② 모델을 CPU 상태로 두고 학습 모드로 변환합니다. (model.train())
model.to(cpu_device)
# Make a copy of the model for layer fusion
fused_model = copy.deepcopy(model)
model.train()
# The model has to be switched to training mode before any layer fusion.
# Otherwise the quantization aware training will not work correctly.
fused_model.train()
# ③ layer fusion을 적용합니다.
# Fuse the model in place rather manually.
fused_model = torch.quantization.fuse_modules(fused_model, [["conv1", "bn1", "relu"]], inplace=True)
for module_name, module in fused_model.named_children():
if "layer" in module_name:
for basic_block_name, basic_block in module.named_children():
torch.quantization.fuse_modules(basic_block, [["conv1", "bn1", "relu1"], ["conv2", "bn2"]], inplace=True)
for sub_block_name, sub_block in basic_block.named_children():
if sub_block_name == "downsample":
torch.quantization.fuse_modules(sub_block, [["0", "1"]], inplace=True)
# Print FP32 model.
print(model)
# Print fused model.
print(fused_model)
# ④ 모델을 평가 모드로 변환 후 (model.eval()) layer fusion이 잘 적용되었는 지 확인합니다. 확인 후에는 다시 학습 모드로 변경해 줍니다.
# Model and fused model should be equivalent.
model.eval()
fused_model.eval()
assert model_equivalence(model_1=model, model_2=fused_model, device=cpu_device, rtol=1e-03, atol=1e-06, num_tests=100, input_size=(1,3,32,32)), "Fused model is not equivalent to the original model!"
# ⑤ input에는 torch.quantization.QuantStub()를 적용시키고 output에는 torch.quantization.DeQuantStub()을 적용시킵니다.
# Prepare the model for quantization aware training. This inserts observers in
# the model that will observe activation tensors during calibration.
quantized_model = QuantizedResNet18(model_fp32=fused_model)
# Using un-fused model will fail.
# Because there is no quantized layer implementation for a single batch normalization layer.
# quantized_model = QuantizedResNet18(model_fp32=model)
# ⑥ quantization configuration을 지정합니다. (ex. symmetric quantization, asymmetric quantization)
# Select quantization schemes from
# https://pytorch.org/docs/stable/quantization-support.html
quantization_config = torch.quantization.get_default_qconfig("fbgemm")
# Custom quantization configurations
# quantization_config = torch.quantization.default_qconfig
# quantization_config = torch.quantization.QConfig(activation=torch.quantization.MinMaxObserver.with_args(dtype=torch.quint8), weight=torch.quantization.MinMaxObserver.with_args(dtype=torch.qint8, qscheme=torch.per_tensor_symmetric))
quantized_model.qconfig = quantization_config
# Print quantization configurations
print(quantized_model.qconfig)
# https://pytorch.org/docs/stable/_modules/torch/quantization/quantize.html#prepare_qat
torch.quantization.prepare_qat(quantized_model, inplace=True)
# ⑦ QAT를 하기 위하여 quantization 모델을 준비합니다.
# # Use training data for calibration.
print("Training QAT Model...")
quantized_model.train()
# ⑧ 모델을 다시 CUDA가 상태로 적용하고 CUDA를 이용하여 QAT를 모델 학습을 진행합니다.
train_model(model=quantized_model, train_loader=train_loader, test_loader=test_loader, device=cuda_device, learning_rate=1e-3, num_epochs=10)
# ⑨ 모델을 다시 CPU 상태로 두고 QAT가 적용된 floating point 모델을 quantized integer model로 변환합니다.
quantized_model.to(cpu_device)
# Using high-level static quantization wrapper
# The above steps, including torch.quantization.prepare, calibrate_model, and torch.quantization.convert, are also equivalent to
# quantized_model = torch.quantization.quantize_qat(model=quantized_model, run_fn=train_model, run_args=[train_loader, test_loader, cuda_device], mapping=None, inplace=False)
# ⑪ quantized integer model을 저장합니다.
quantized_model = torch.quantization.convert(quantized_model, inplace=True)
quantized_model.eval()
# Print quantized model.
print(quantized_model)
# Save quantized model.
save_torchscript_model(model=quantized_model, model_dir=model_dir, model_filename=quantized_model_filename)
# Load quantized model.
quantized_jit_model = load_torchscript_model(model_filepath=quantized_model_filepath, device=cpu_device)
_, fp32_eval_accuracy = evaluate_model(model=model, test_loader=test_loader, device=cpu_device, criterion=None)
_, int8_eval_accuracy = evaluate_model(model=quantized_jit_model, test_loader=test_loader, device=cpu_device, criterion=None)
# Skip this assertion since the values might deviate a lot.
# assert model_equivalence(model_1=model, model_2=quantized_jit_model, device=cpu_device, rtol=1e-01, atol=1e-02, num_tests=100, input_size=(1,3,32,32)), "Quantized model deviates from the original model too much!"
print("FP32 evaluation accuracy: {:.3f}".format(fp32_eval_accuracy))
print("INT8 evaluation accuracy: {:.3f}".format(int8_eval_accuracy))
fp32_cpu_inference_latency = measure_inference_latency(model=model, device=cpu_device, input_size=(1,3,32,32), num_samples=100)
int8_cpu_inference_latency = measure_inference_latency(model=quantized_model, device=cpu_device, input_size=(1,3,32,32), num_samples=100)
int8_jit_cpu_inference_latency = measure_inference_latency(model=quantized_jit_model, device=cpu_device, input_size=(1,3,32,32), num_samples=100)
fp32_gpu_inference_latency = measure_inference_latency(model=model, device=cuda_device, input_size=(1,3,32,32), num_samples=100)
print("FP32 CPU Inference Latency: {:.2f} ms / sample".format(fp32_cpu_inference_latency * 1000))
print("FP32 CUDA Inference Latency: {:.2f} ms / sample".format(fp32_gpu_inference_latency * 1000))
print("INT8 CPU Inference Latency: {:.2f} ms / sample".format(int8_cpu_inference_latency * 1000))
print("INT8 JIT CPU Inference Latency: {:.2f} ms / sample".format(int8_jit_cpu_inference_latency * 1000))
if __name__ == "__main__":
main()
FP32 evaluation accuracy: 0.869
INT8 evaluation accuracy: 0.867
FP32 CPU Inference Latency: 4.36 ms / sample
FP32 CUDA Inference Latency: 3.55 ms / sample
INT8 CPU Inference Latency: 1.85 ms / sample
INT8 JIT CPU Inference Latency: 0.41 ms / sample