(멀티플 뷰 지오메트리) Lecture 11. Two-view and multi-view stereo

(멀티플 뷰 지오메트리) Lecture 11. Two-view and multi-view stereo

2022, Apr 20    


Multiple View Geometry 글 목차


  • 참조 : https://youtu.be/OpZs7kfjFPA?list=PLxg0CGqViygP47ERvqHw_v7FVnUovJeaz
  • 참조 : https://youtu.be/N_iECTqZtQQ?list=PLxg0CGqViygP47ERvqHw_v7FVnUovJeaz
  • 참조 : https://youtu.be/hfQR7X8eH9s?list=PLxg0CGqViygP47ERvqHw_v7FVnUovJeaz
  • 참조 : https://youtu.be/YgOC9DjHyJs?list=PLxg0CGqViygP47ERvqHw_v7FVnUovJeaz
  • 참조 : Multiple View Geometry in Computer Vision





Drawing



Drawing



Drawing



Drawing



Drawing



Drawing



Drawing



Drawing



Drawing



Drawing



Drawing



Drawing



Drawing



Drawing



Drawing



Drawing



Drawing



Drawing



Drawing



Drawing



Drawing





Drawing



Drawing



Drawing



Drawing



Drawing



Drawing



Drawing



Drawing



Drawing



Drawing



Drawing



Drawing



Drawing





Drawing



Drawing



Drawing



Drawing



Drawing



Drawing



Drawing



Drawing



Drawing



Drawing



Drawing



Drawing



Drawing



Drawing



Drawing



Drawing



Drawing



Drawing





Drawing



Drawing



Drawing



Drawing



Drawing



Drawing



Drawing



Drawing



Drawing



Drawing



Drawing



Drawing



Drawing



Drawing



Drawing



Drawing


  • \[\text{Reference Camera Projection Matrix: } P_{\text{ref}} = K_{text{ref}}[I \vert 0]\]
  • \[\text{Camera k Projection Matrix: } P_{k} = K_{k}[R_{k}^{T} \vert -R_{k}^{T}C_{k}]\]


  • reference cameraimage plane으로 부터 카메라 \(k\) 의 image plane으로 매핑하는 homography를 구해보도록 하겠습니다.
  • reference camera image plane 상의 임의의 점을 \(x_{\text{ref}}\) 라고 하고 이에 대응되는 \(k\) 카메라의 image plane 상의 점을 \(x_{k}\) 라고 하겠습니다.


  • \[X \text{: A point on the } \Pi_{m} \text{ plane in homogeneous coordinates.}\]
  • \[n_{m}^{T}X - d_{m} = 0\]


  • Point \(X\) 를 \(x_{\text{ref}}\) 와 \(x_{k}\) 로 투영하면 다음과 같습니다.


  • \[\text{Reference Camera: } x_{\text{ref}} = P_{\text{ref}} X = K_{\text{ref}} X\]
  • \[\text{Camera K: } x_{k} = P_{k}X = K_{k}(R_{k}^{T}X - R_{k}^{T}C_{k})\]


  • 위 \(x_{\text{ref}}, x_{k}\) 식을 변형하면 다음과 같습니다.


  • \[X = K_{\text{ref}}^{-1} x_{\text{ref}}\]
  • \[n_{m}^{T}X = d_{m}\]
  • \[n_{m}^{T}K_{\text{ref}}^{-1} x_{\text{ref}} = d_{m}\]
  • \[\frac{n_{m}^{T}K_{\text{ref}}^{-1} x_{\text{ref}}}{d_{m}} = 1 \text{ : This term will be used below.}\]
  • \[\begin{align} \color{red}{x_{k}} &= K_{k}(R_{k}^{T}K_{\text{ref}}^{-1}x_{\text{ref}} - R_{k}^{T}C_{k}) \\ &= K_{k}R_{k}^{T}K_{\text{ref}}^{-1}x_{\text{ref}} - K_{k}R_{k}^{T}C_{k} \\ &= K_{k}R_{k}^{T}K_{\text{ref}}^{-1}x_{\text{ref}} - K_{k}R_{k}^{T}C_{k} \cdot \frac{n_{m}^{T}K_{\text{ref}}^{-1} x_{\text{ref}}}{d_{m}} \quad (\because \frac{n_{m}^{T}K_{\text{ref}}^{-1} x_{\text{ref}}}{d_{m}} = 1) \\ &= \color{blue}{K_{k}\left( R_{k}^{T} + \frac{R_{k}^{T}C_{k}n_{m}}{d_{m}} \right)K_{\text{ref}}^{-1}} \color{green}{x_{\text{ref}}} \end{align}\]


  • 즉, \(x_{\text{ref}}\) 를 \(x_{k}\) 로 변환하는 Homography인 \(H_{\Pi_m, P_k}\) 는 위 파란색 식으로 정의될 수 있습니다.


  • \[H_{\Pi_m, P_k} = K_{k}\left( R_{k}^{T} + \frac{R_{k}^{T}C_{k}n_{m}}{d_{m}} \right)K_{\text{ref}}^{-1}\]


Drawing



Drawing



Drawing



Drawing



Drawing



Drawing



Multiple View Geometry 글 목차