opencv-python 코드 snippets

opencv-python 코드 snippets

2018, Jul 21    


opencv 글 목록


목차



warpAffine을 이용한 기하학적 변환



Translation Transformation (이동 변환)


  • Affine 변환을 이용하여 이동 변환을 구현해 보도록 하겠습니다. 사용 방법은 다음과 같습니다.


Drawing


  • src는 입력 영상을 뜻하고 M은 이동 변환을 위한 affine 변환 행렬 입니다. 위의 이론과 관련된 링크를 참조하면 Affine 변환에서 사용되는 2 X 3 크기의 affine 변환 행렬의 의미를 확인하실 수 있습니다. affine 변환 행렬은 np.float32로 선언되어야 합니다.
  • dsize는 출력 영상의 크기이며 dst는 출력 영상이 저장되는 array 입니다. 이 때, dsizesrc의 사이즈와 다르면 resize를 해야 하는데 그 때 사용되는 interpolation 방법이 flags입니다. 기본적으로 bilinear interpolation이 사용됩니다.
  • 이동 변환을 하게 되는 경우 dst 사이즈 영역에서 값이 존재하는 영역이 있는 반면 값이 없는 영역도 발생하게 됩니다. 이 영역을 어떤 값으로 채울 지가 borderValue에 해당하며 기본값은 검정색인 0이 됩니다.


src = cv2.imread('test.png')

'''
x' ← x + 200
y' ← y + 100

[1, 0, 200
 0, 1, 100]
'''
aff = np.array([[1, 0, 200], [0, 1, 100]], dtype=np.float32)
dst = cv2.warpAffine(src, aff, (0, 0))


Drawing


  • 위 결과와 같이 \(x\) 방향으로 200, \(y\) 방향으로 100만큼 이동 변환하였고, 픽셀값이 없는 영역은 검은색 (0)으로 입력된 것을 확인할 수 있습니다.


Shear Transformation (전단 변환)


  • 먼저 전단 변환과 관련된 이론적인 내용은 링크를 참조하시기 바랍니다. 위 링크를 통하여 전단 변환 적용 시 어떻게 Affine 행렬을 작성해야 할 지 알 수 있습니다.
  • 아래 예제는 x축을 y축 대비 0.5의 비율로 기울인 효과를 나타냅니다.


src = cv2.imread('test.png') 

'''
x' ← x + 0.5 * y
y' ← y 

[1, 0.5, 0
 0, 1, 0]
'''
aff = np.array([[1, 0.5, 0], [0, 1, 0]], dtype=np.float32)
h, w = src.shape[:2] 

# dst의 크기는 affine 변환 행렬에서 x축 방향으로 늘어난 만큼 더 더해주어야 합니다.
# affine 변환 행렬에서 x축의 사이즈가 늘어난 크기는 y축 사이즈의 반 만큼 늘어나게 되므로 (h*0.5)를 w에 더해줍니다.
dst = cv2.warpAffine(src, aff, (w + int(h * 0.5), h))


Drawing


  • 따라서 위 코드의 Affine 변환을 적용하였을 때, 위 그림과 같이 Shear Transformation이 적용됩니다.


Rotation Transformation (회전 변환)



rad = 20 * math.pi / 180 
aff = np.array([[math.cos(rad), math.sin(rad), 0], 
                [-math.sin(rad), math.cos(rad), 0]], dtype=np.float32)
dst = cv2.warpAffine(src, aff, (0, 0))


Drawing


  • 위 회전 결과는 직교 좌표계에서 (0, 0)을 기준 축으로 두고 회전을 하게 됩니다. 이와 같은 경우 회전되는 방향으로 많은 양의 이미지가 잘리게 됩니다.
  • 이상적으로 이미지를 회전 하려면 이미지의 중앙 좌표를 기준으로 회전을 하는 것이 합리적으로 보입니다. 이미지의 임의의 점 (ex. 중앙 좌표)를 기준으로 회전 하려면 다음과 같은 과정 (① 이동 변환 ② 회전 변환 ③ 이동 변환)을 거쳐서 회전을 하게 됩니다.


Drawing


  • 이와 같은 변환을 하기 위해서 직접 affine 변환 행렬을 만들어도 상관 없고 getRotationMatrix2d 함수를 사용해도 됩니다.


Drawing


  • 위 affine 변환 행렬에서 (x, y)는 이미지에서 회전 축을 의미합니다.
  • angle은 degree 단위의 각도로 반시계 방향으로 30도 회전이 필요하면 30을 입력합니다. 시계 방향은 음수 각도로 입력하면 됩니다.
  • scale은 회전하면서 영상을 확대할 지, 축소할 지에 대한 scale 값입니다. 보통 영상을 회전하면 잘리는 영역이 발생하기 때문에 축소하여 회전된 영상을 확인하곤 합니다.


  • 그러면 getRotationMatrix2dwarpAffine 함수를 어떻게 섞어서 사용하는 지 살펴보겠습니다.


center_point = (src.shape[1] / 2, src.shape[0] / 2)
# 20도 반시계 방향 회전 + scale 변환 없음
affine_matrix = cv2.getRotationMatrix2D(cp, 20, 1) 
dst = cv2.warpAffine(src, affine_matrix, (0, 0))


Drawing


warpAffine과 warpPerspective를 이용한 기하학적 변환


  • 먼저 Affine Transformation과 Perspective Transformation에 관한 개념적인 내용은 아래 링크를 통해 확인할 수 있습니다.
  • 먼저 Affine Transformation을 하기 위하여 사용하는 2가지 함수는 getAffineTransform 함수와 warpAffine 함수입니다.


  • getAffineTransform 함수는 원 영상의 3개의 좌표 \((x_{1}, y_{1}), (x_{2}, y_{2}), (x_{3}, y_{3})\)와 변환된 영상에서 3개의 좌표에 대응되는 좌표 \((x_{1}', y_{1}'), (x_{2}', y_{2}'), (x_{3}', y_{3}')\)를 입력으로 주면 2 X 3 형태의 Affine 변환 행렬을 반환합니다.


Drawing


  • getAffineTransform을 통해 얻은 Affine 변환 행렬을warpAffine의 2번째 인자 M에 넣으면 Affine Transformation을 할 수 있습니다.


Drawing


  • Perspective Transformation을 할 때에도 방식은 유사합니다. getPerspectiveTransform 함수를 통하여 perspective 변환 행렬을 얻고 warpPerspective함수를 이용하여 변환을 합니다.
  • getPerspectiveTransform 함수는 원 영상의 4개의 좌표 \((x_{1}, y_{1}), (x_{2}, y_{2}), (x_{3}, y_{3}), (x_{4}, y_{4})\)와 변환된 영상에서 4개의 좌표에 대응되는 좌표 \((x_{1}', y_{1}'), (x_{2}', y_{2}'), (x_{3}', y_{3}'), (x_{4}', y_{4}')\)를 입력으로 주면 3 X 3 형태의 Perspective 변환 행렬을 반환합니다.


Drawing


  • getAffineTgetPerspectiveTransformransform을 통해 얻은 Affine 변환 행렬을warpPerspective의 2번째 인자 M에 넣으면 Perspective Transformation을 할 수 있습니다.


Drawing


  • Perspective Transformation을 OpenCV 코드로 어떻게 사용하는 지 예제를 살펴보겠습니다.


src = cv2.imread('namecard.jpg')
w, h = 720, 400 

# 원 영상에서 4개의 점
srcQuad = np.array([[325, 307], [760, 369], [718, 611], [231, 515]], np.float32)
# perspective 변환 시 대응 되어야 할 점 (이미지의 각 모서리에 맞추는 예제)
dstQuad = np.array([[0, 0], [w-1, 0], [w-1, h-1], [0, h-1]], np.float32) 
pers = cv2.getPerspectiveTransform(srcQuad, dstQuad) 
dst = cv2.warpPerspective(src, pers, (w, h))


resize를 이용한 크기 변환


  • 앞에서 다룬 Affine 변환 중 크기 변환은 기하학적 변환 중 가장 많이 사용되는 변환 중 하나입니다.
  • 따라서 OpenCV에서는 크기 변환을 위한 별도 함수인 resize를 제공합니다.


Drawing


  • 주의하실 점은 2번째 인자인 dsize 입니다. 먼저 출력 영상의 size를 (w, h) 형태로 명시적으로 입력할 수 있습니다. 하지만 만약 dsize = (0, 0)이 입력된다면 이후에 입력되는 (fx, fy)를 통하여 출력 영상의 확대/축소 비율을 정할 수 있습니다. 이 값은 \(x\)와 \(y\) 방향의 scale factor 입니다. 따라서 실제 출력되는 크기인 dsize = (w, h)가 입력되거나 dsize = (0, 0) && 확대/축소 비율 (fx, fy)이 반드시 입력되어야 합니다.
  • resize의 마지막 인자는 interpolation 입니다. 앞에서 다룬 affine 변환에서는 flags 인자에서 interpolation을 다룹니다. interpolation은 이미지의 기하학적 변환이 발생할 때 (특히, 영상의 크기가 커질 때), 중간 중간에 채워지지 않는 값들을 어떻게 채워 나아갈 지에 대한 방법입니다.
  • affine 변환과 affine 변환 중 하나인 resize 모두 기본 interpolation 방법은 bilinear interpolation(양선형 보간법)입니다. bilinear interpolation은 interpolation 성능이 가장 좋은 방법은 아니지만 매우 효율적인 방법이면서 어느 정도 성능을 보장하기 때문에 많이 사용하는 방법입니다.
  • OpenCV에서 제공하는 5가지 interpolation 방법은 위 테이블을 참조하시면 됩니다. 아래에 있는 방법일수록 효율성은 떨어지지만 interpolation 성능은 높아집니다. 마지막의 INTER_AREA는 영상 축소 시 효과적입니다.


src = cv2.imread('rose.bmp') # 480x320 
dst1 = cv2.resize(src, (0, 0), fx=4, fy=4, interpolation=cv2.INTER_NEAREST) 
dst2 = cv2.resize(src, (1920, 1280)) # cv2.INTER_LINEAR 
dst3 = cv2.resize(src, (1920, 1280), interpolation=cv2.INTER_CUBIC) 
dst4 = cv2.resize(src, (1920, 1280), interpolation=cv2.INTER_LANCZOS4)


Drawing


  • 각 interpolation 방식에 따른 resize 결과를 살펴보면 INTER_NEAREST은 artifact가 관찰되는 문제가 있는 반면 나머지 방식은 큰 품질 차이가 보이진 않습니다.


Drawing


  • 앞에서 설명한 바와 같이 이미지를 축소할 때에는 INTER_AREA 방식의 interpolation을 사용하는 것이 좋습니다. 이 방법의 특성상 위 그림과 같이 어떤 형상이 1 ~ 2 픽셀로 이루어진 경우 영상 축소 시 디테일이 사라지는 문제를 개선할 수 있기 때문입니다.


flip을 이용한 대칭 변환


  • 영상의 대칭 변환을 사용하려면 flip 함수를 이용하면 쉽게 구현할 수 있습니다.
  • flip은 기본적으로 좌우 대칭, 상하 대칭, 좌우 + 상하 대칭이 있습니다. 사용 방법은 다음과 같습니다.


Drawing



window 창 크기 조절하는 방법


  • 이미지의 height, width의 크기는 유지한 상태로 window에서 이미지를 크게 보고 싶으면 아래 코드를 통하여 창의 크기를 변경할 수 있습니다.
  • 이 때, window의 크기만 조정하고 이미지의 크기는 변경하지 않으므로, 화면에 보이는 픽셀 한 개의 크기가 확대/축소 되어 전체 window의 크기가 변경된다고 이해하면 됩니다. 따라서 확대할 경우 한 픽셀의 크기가 커져서 보이는 것을 확인할 수 있습니다.


cv2.namedWindow("image", 0)
cv2.resizeWindow("image", win_width, win_height)


  • 위 코드와 같은 경우 window의 크기가 win_width, win_height 크기로 변경됩니다. 물론 이미지의 실제 크기 변경은 없습니다.


contrast와 brightness 변경 방법


  • 참조 : https://docs.opencv.org/3.4/d3/dc1/tutorial_basic_linear_transform.html
  • 픽셀의 값에 곱을 하면 contrast가 조절되고 덧셈을 하면 brightness가 조절됩니다.


  • \[g(i,j) = \alpha \cdot f(i,j) + \beta\]


  • 위 수식과 같이 각 픽셀에 대하여 \(\alpha\) 값을 곱해주면 contrast가 조정되고 \(\beta\) 값을 더해주면 brightness가 조정됩니다.
  • 코드를 간단히 살펴보면 다음과 같습니다. (물론 아래 코드를 사용하진 않습니다. 느리기 때문입니다.)


for y in range(image.shape[0]):
    for x in range(image.shape[1]):
        for c in range(image.shape[2]):
            new_image[y,x,c] = np.clip(alpha*image[y,x,c] + beta, 0, 255)


  • 실제 opencv에서 제공하는 코드는 다음과 같습니다.


new_image = cv.convertScaleAbs(image, alpha=alpha, beta=beta)


  • 위 코드는 for-loop을 사용하지 않으면서도 opencv 내부적으로 잘 구현되어 있어서 for-loop의 naive한 버전 보다 상당히 빠르게 contrast와 brightness를 적용할 수 있습니다.


이미지 붙이기(hconcat, vconcat)


  • 이미지를 가로로 또는 세로로 붙이고 싶을 때, 쉽게 사용할 수 있는 함수가 hconcatvconcat이 있습니다.
  • hconcat은 horizontal concatenate로 가로로 이미지를 붙이는 것이고 vconcat은 vertical concatenate로 세로로 이미지를 붙이는 것입니다.
  • hconcat을 이용하려면 가로로 붙여야 하기 때문에 height가 같아야 합니다. 반면 vconcat은 세로로 이미지를 붙여야 하기 때문에 width가 같아야 합니다.


image = cv2.hconcat([image1, image2, image3])
image = cv2.vconcat([image1, image2, image3])


OpenCV 한글 쓰기


  • OpenCV를 이용하여 이미지에 글자를 쓸 때, 한글은 안써집니다.
  • 따라서 OpenCV 함수를 직접 이용하지 않고 PIL(Python Image Library)를 이용하여 우회해서 사용하면 사용 가능합니다.
  • 아래 함수는 numpy와 pil을 이용하여 numpy 배열에 한글을 입력하는 함수 PutText를 작성한 것입니다.
  • PutText 함수의 fontpath 의 font를 수정하면 원하는 font도 사용가능합니다.
import numpy as np
from PIL import ImageFont, ImageDraw, Image
def PutText(src, text, font_size, xy, bgr):
    fontpath = "fonts/gulim.ttc"
    font = ImageFont.truetype(fontpath, font_size)
    src_pil = Image.fromarray(src)
    draw = ImageDraw.Draw(src_pil)
    draw.text(xy, text, font=font, fill=bgr)
    target = np.array(src_pil)
    return target

img = np.zeros((300,500,3),np.uint8)
img= PutText(img, "테스트입니다.", font_size = 30, xy = (100, 200), bgr = (255, 0, 0))
cv2.imshow("img", img)
cv2.waitKey()
cv2.destroyAllWindows()


90도 이미지 회전


  • 파이썬에서 이미지를 90도 회전하는 방법은 opencv를 이용하는 방법과 numpy를 이용하는 방법이 있습니다.
  • 이 글에서는 opencv를 이용하는 방법에 대하여 간략하게 설명하겠습니다.
  • 사용하는 함수는 cv2.rotate() 함수이며 사용 방법은 target_image = cv2.rotate(src_image, 옵션)로 사용합니다.
  • 사용 가능한 옵션은 다음과 같습니다.
    • cv2.ROTATE_90_CLOCKWISE : 90도 시계 방향 회전
    • cv2.ROTATE_90_COUNTERCLOCKWISE : 90도 반시계 방향 회전
    • cv2.ROTATE_180 : 180도 회전
import cv2

img = cv2.imread('data/src/lena.jpg')

img_rotate_90_clockwise = cv2.rotate(img, cv2.ROTATE_90_CLOCKWISE)
img_rotate_90_counterclockwise = cv2.rotate(img, cv2.ROTATE_90_COUNTERCLOCKWISE)
img_rotate_180 = cv2.rotate(img, cv2.ROTATE_180)


gif 만들기 with imageio


  • 이미지를 이용하여 GIF를 만들 때에는 imageio라는 패키지를 이용하면 쉽게 만들 수 있습니다.
  • 설치 : pip install imageio
  • imageio.mimsave() 함수를 통하여 gif 형태로 저장할 수 있습니다. 기본적으로 파일 경로와 gif로 만들 이미지 리스트를 파라미터로 받습니다.
  • 프레임 간 간격은 duration이란 옵션을 추가적으로 적용하여 간격 조정을 할 수 있습니다.


import imageio
images = []
for filename in filenames:
    images.append(imageio.imread(filename))
imageio.mimsave('/path/to/movie.gif', images)
# imageio.mimsave('/path/to/movie.gif', images, duration=0.1)


두 이미지를 오버레이 하기


  • 두 이미지를 투명한 형태로 오버레이 하여 하나의 이미지에서 겹쳐서 보는 방법을 blending 이라고 합니다.
  • 두 이미지를 blending 하기 위해서는 다음과 같은 간단한 연산을 통해 구현 가능합니다.


  • \[dst = \alpha * src1 + \beta * src2 + \gamma\]
  • \[\alpha + \beta = 1, \ \ 0 \le \alpha, \beta \le 1\]


  • 위 식을 살펴보면 각 영상에 \(\alpha, \beta\)와 같은 가중치가 있습니다. 이 가중치가 1에 가까울수록 해당 영상을 좀 더 진하게 반영하고 0에 가까울수록 투명하게 반영됩니다.
  • 위 식의 \(\gamma\)는 bias에 해당합니다.
  • blending을 하기 위해서 cv2.addWeighted를 사용하며 사용 방법은 다음과 같습니다.
  • dst = cv2.addWeighted(src1, alpha, src2, beta, gamma)
  • 위 함수는 src1과 src2 영상을 각각 \(\alpha, \beta\)의 가중치를 사용하여 blending 합니다.


픽셀의 하한, 상한 값 정하기


  • 이미지 데이터에 어떤 연산을 가했을 때, uint8 데이터 타입의 값 범위인 [0, 255]를 벗어날 수 있습니다.
  • 범위에 벗어난 값을 하한값, 상한값으로 saturation 시킬 때, np.clip(array, lower_bound, upper_bound)을 이용할 수 있습니다.


lower_bound = 0
upper_bound = 255
img = np.clip(img, lower_bound, upper_bound).astype(np.uint8)


opencv 글 목록