선형대수학 글 목차

선형대수학 글 목차

2000, Jan 01    


C언어로 선형대수학 함수 구현


선형 대수학 관련 주요 내용



선형 대수학 내용 정리



Linear Algebra and Its Applications


  • Systems of Linear Equations
  • Row Reduction and Echelon Forms
  • Vector Equations
  • The Matrix Equations Ax=b
  • Solution Sets of Linear Systems
  • Linear Independence
  • Introduction to Linear Transformation
  • The Matrix of a Linear Transformation
  • Matrix Operations
  • The inverse of a Matrix
  • Characterizations of Invertible Matrices
  • Partitioned Matrices
  • Matrix Factorization
  • Subspaces of Rn
  • Dimension and Rank
  • Introduction to Determinants
  • Properties of Determinants
  • Cramer’s Rule, Volume, and Linear Transformations
  • Vector spaces
  • Eigenvectors and Eigenvalues
  • The Characteristic Equations
  • Diagonalization
  • Eigenvectors and Linear Transformations
  • Complex Eigenvalues
  • Inner Product, Length, and Orthogonality
  • Orthogonal Sets
  • Orthogonal Projections
  • The Gram-Schmidt Process
  • Least-Square Problems
  • Diagonalization of Symmetric Matrices
  • Quadratic Forms
  • Constrained Optimization
  • The Singular Value Decomposition



Gilbert Strang’s Linear Algebra


칸 아카데미 선형 대수학




Fundamental of Matrix Computations


선형 대수학 관련 기타 글들